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On the Feng-Rao Bound for the L-construction of

Algebraic Geometry Codes

Ryutaroh MATSUMOTO†, Student Member and Shinji MIURA††, Member

SUMMARY We show how to apply the Feng-Rao decod-
ing algorithm and the Feng-Rao bound for the Ω-construction of
algebraic geometry codes to the L-construction. Then we give
examples in which the L-construction gives better linear codes
than the Ω-construction in certain range of parameters on the
same curve.
key words: algebraic geometry code, minimum distance, decod-

ing, L-construction

1. Introduction

Let K be a finite field, F/K an algebraic function field
of one variable, P1, . . . , Pn, Q pairwise distinct places of
F with degree one, and D := P1 + · · ·+ Pn. Goppa [4]
introduced the algebraic geometry code

CΩ(D,mQ) := {(resP1(ω), . . . , resPn
(ω)) |

ω ∈ Ω(mQ−D)},

which is called the Ω-construction. On the other hand,
another kind of algebraic geometry code

CL(D,mQ) := {(f(P1), . . . , f(Pn)) | f ∈ L(mQ)},

which is called the L-construction, was not explicitly
mentioned by Goppa but known to researchers includ-
ing Goppa and Manin [17, p.386]. CL(D,mQ) seems
to be first explicitly defined in [8], [15].

Most research articles treat only CΩ(D,mQ). A
reason for this trend may be due to the lack of efficient
decoding algorithms for CL(D,mQ), while we know ef-
ficient decoding algorithms for CΩ(D,mQ) proposed by
Feng and Rao [1] and Sakata et al. [12]. In this pa-
per we show how to apply the Feng-Rao algorithm to
CL(D,mQ). The reader may wonder if there is any ad-
vantage considering CL(D,mQ) over CΩ(D,mQ). We
shall give examples in which the error-correcting capa-
bility of CL(D,mQ) is larger than CΩ(D,m′Q) while
their dimensions are the same, where F,D,Q are com-
mon to CL(D,mQ) and CΩ(D,m′Q). Thus it is worth
considering CL(D,mQ) as well for fixed F,D,Q.
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In Sect. 2, we slightly generalize Miura’s definition
[9], [10] of the Feng-Rao bound [1] and the improved al-
gebraic geometry codes [2]. In Sect. 3, we show how to
apply the Feng-Rao bound in Sect. 2 to CL(D,mQ). In
Sect. 4, we give examples in which the L-construction
gives better linear codes than the Ω-construction in
certain range of parameters. In Sect. 5, concluding re-
marks are given.

2. Improved Geometric Goppa Codes and
Their Decoding

Notations follow those in Stichtenoth’s textbook [16]
unless otherwise specified. Feng and Rao presented an
efficient decoding algorithm for one-point algebraic ge-
ometry codes CΩ(D,mQ) [1], then pointed out that
one can increase the dimension of an algebraic ge-
ometry code CΩ(D,mQ) without decreasing its error-
correcting capability by deleting unnecessary rows in
the check matrix [2]. The latter construction is called
improved geometric Goppa codes. Miura observed that
the results of Feng and Rao can be obtained using only
linear algebra [9], [10]. In order to apply the Feng-
Rao bound and decoding algorithm to CL(D,mQ), we
slightly generalize Miura’s results in this section. Other
reformulation of [1], [2] can be found in [5]–[7], [9]–[11],
[13], [14].

Let {u1, . . . ,un}, {v1, . . . ,vn} and {w1, . . . ,wn}
be bases of Kn. For i = 1, . . . , n, let Wi be the linear
space spanned by {w1, . . . ,wi}, with W0 = {0} and
W−1 = ∅. For a and b ∈ Kn, a ∗ b ∈ Kn denotes the
componentwise product of a and b.

Definition 2.1: A pair (ui,vj) is said to be well-
behaving if ui ∗ vj ∈ Ws \ Ws−1 for some s and
uu ∗ vv ∈ Ws−1 for all 1 ≤ u ≤ i, 1 ≤ v ≤ j,
(u, v) 
= (i, j).

A pair (ui,vj) is said to be weakly well-behaving if
ui ∗ vj ∈ Ws \Ws−1 for some s, uu ∗ vj ∈ Ws−1 for all
1 ≤ u < i, and ui ∗ vv ∈ Ws−1 for all 1 ≤ v < j.

Definition 2.2: For s = 1, . . . , n, we define νs (resp.
λs) to be #{(ui,vj) | (ui,vj) is well-behaving (resp.
weakly well-behaving) and ui ∗ vj ∈ Ws \Ws−1}.

Throughout this paper W denotes a nonempty
proper subset of {w1, . . . ,wn}. Let C(W ) be the dual
code of the linear code generated by the elements in W .
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We shall consider the minimum distance of C(W ) and
a decoding algorithm for C(W ).

Definition 2.3: We define

δFR(W ) := min{νs | ws /∈ W},

δWFR(W ) := min{λs | ws /∈ W}.

We can easily see that δWFR ≥ δFR, because well-
behaving implies weakly well-behaving.

Proposition 2.4: The minimum distance of C(W ) is
greater than or equal to δWFR.

Proof: For y = (y1, . . . , yn) ∈ Kn, we define the syn-
drome matrix by

S(y) =




u1

...
un







y1

. . .
yn







v1

...
vn




T

.

Then the Hamming weight of y is equal to rank(S(y)),
and the (i, j)-entry of S(y) is equal to 〈y,ui∗vj〉, where
〈, 〉 denotes the inner product.

Suppose that 〈y,w1〉 = · · · = 〈y,ws−1〉 = 0 and
〈y,ws〉 
= 0 for some positive integer s. If (ui,vj) is
weakly well-behaving and ui∗vj ∈ Ws\Ws−1, then the
(i, j)-entry of S(y) is nonzero, because ui∗vj is a linear
combination of w1, . . . ,ws and the coefficient of ws is
nonzero. The (u, j) and (i, v)-entries are zero for all 1 ≤
u < i, 1 ≤ v < j, because uu ∗vj and ui ∗vv are linear
combinations of w1, . . . ,ws−1. The number of weakly
well-behaving (ui,vj) such that ui ∗vj ∈ Ws \Ws−1 is
λs. Thus the Hamming weight of y (= rank(S(y))) is
equal to or greater than λs.

Suppose further that y is a nonzero codeword in
the linear code C(W ). Then ws /∈ W , which completes
the proof. ✷

Proposition 2.5: We can correct �(δFR(W ) − 1)/2�
or less errors of C(W ) in computational complexity
O(n3).

Proof: The decoding algorithm, the proof of its cor-
rectness and the analysis of its computational complex-
ity are almost the same as those given in [6, Section 6.3],
with differences:

• νs in our paper corresponds to νl in [6].
• The syndrome matrix S(y) in our paper is smaller
than that in [6]. ✷

In order to construct a linear code C(W ) with
the minimum distance not less than d with an error-
correcting algorithm, W has to be chosen as

W (d) := {ws | νs ≤ d− 1} (1)

to minimize the number of check symbols of C(W ).
Feng and Rao pointed out in [2] that unnecessary rows
in the check matrix can be deleted without decreasing
the error-correcting capability as Eq. (1).

Example 2.6: We can construct an example in which
δWFR is strictly greater than δFR. Suppose that K is
the finite field with 2 elements, {u1,u2} = {v1,v2} =
{(1, 0), (0, 1)}, {w1,w2} = {(0, 1), (1, 0)}, and W =
{w1}. Then δFR(W ) = 0 but δWFR(W ) = 1. We do
not know an algebraic geometry code in which δWFR

gives strictly better estimation than δFR.

Problem 2.7: It is an open problem to find an ef-
ficient decoding algorithm that corrects errors up to
δWFR.

3. On the Feng-Rao Bound and the Goppa
Bound for CL(D, mQ)

Let {a1, . . . , an} := {m | CΩ(D,mQ) 
= CΩ(D, (m +
1)Q)} such that a1 > a2 > · · · > an. Choose ωi ∈
Ω(aiQ−D) such that vQ(ωi) = ai for i = 1, . . . , n.

L(∞Q) denotes L(Q) ∪ L(2Q) ∪ · · ·. Choose a
K-basis {f1, f2, . . .} of L(∞Q) such that vQ(fi) >
vQ(fi+1) for all positive integer i. Let {b1, . . . , bn} :=
{m | CL(D,mQ) 
= CL(D, (m − 1)Q)} such that
b1 < b2 < · · · < bn. Choose gi among {f1, f2, . . .}
such that vQ(gi) = −bi for i = 1, . . . , n.

Hereafter we set ui = (gi(P1), . . . , gi(Pn)) and
vi = wi = (resP1(ωi), . . . , resPn

(ωi)) for i = 1, . . . , n,
and apply the results in Sect. 2 to this setting. If
dimCΩ(D,mQ) = r, then CΩ(D,mQ) = Wr. There-
fore if W = {w1, . . . ,wr}, then C(W ) = CL(D,mQ).
It is clear that we can correct errors up to the designed
minimum distance δFR(W ). Hereafter g denotes the
genus of the function field F . By the Goppa bound
we know that the minimum distance of CL(D,mQ)
is greater than or equal to r + 1 − g. But it is not
clear whether δFR(W ) ≥ r+ 1− g. We shall show that
δFR(W ) ≥ r+1−g, which is an immediate consequence
of Proposition 3.2.

Lemma 3.1: If vQ(giωj) = vQ(ωs), then (ui,vj) is
well-behaving and ui ∗ vj ∈ Ws \Ws−1.

Proof: Let ω ∈ Ω(vQ(ωs)Q−D). By the definition of
{w1, . . . ,wn}, we have



(resP1(ω), . . . , resPn
(ω)) ∈ Ws−1

if vQ(ω) > vQ(ωs),
(resP1(ω), . . . , resPn

(ω)) ∈ Ws \Ws−1

if vQ(ω) = vQ(ωs).

Since giωj ∈ Ω(vQ(ωs)Q − D), ui ∗ vj =
(resP1(giωj), . . . , resPn

(giωj)) ∈ Ws \ Ws−1. For all
1 ≤ u ≤ i, 1 ≤ v ≤ j and (u, v) 
= (i, j), we have guωv ∈
Ω(vQ(ωs)Q − D) and vQ(guωv) > vQ(ωs). Hence
uu ∗vv = (resP1(guωv), . . . , resPn

(guωv)) ∈ Ws−1. This
completes the proof. ✷

Proposition 3.2: νs ≥ s− g.

Proof:We shall count the number of pairs (fi, ωj) such
that vQ(fiωj) = vQ(ωs). For fixed ωj and ωs, there
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Fig. 1 Performance of CL(D, mQ) and CΩ(D, mQ).

exists fi such that vQ(fiωj) = vQ(ωs) if and only if
vQ(ωs) − vQ(ωj) ∈ {vQ(fi) | i = 1, 2, . . .}. Since the
number of nonpositive integers not in {vQ(fi) | i =
1, 2, . . .} is g, we have #{ωj | there is no fi such that
vQ(fiωj) = vQ(ωs)} ≤ g. Thus #{(fi, ωj) | vQ(fiωj) =
vQ(ωs)} ≥ s− g.

Next we shall show that if vQ(fiωj) = vQ(ωs)
then there exists an index i′ such that fi = gi′ , which
completes the proof by the previous lemma. Sup-
pose that there is no i′ such that fi = gi′ . Then
(fi(P1), . . . , fi(Pn)) can be written as a linear com-
bination of (fu(P1), . . . , fu(Pn)) for u = 1, . . . , i − 1,
which implies (resP1(ωs), . . . , resPn

(ωs)) can be written
as a linear combination of (resP1(ω�), . . . , resPn

(ω�)) for
! = 1, . . . , s − 1 and (resP1(fuωj), . . . , resPn

(fuωj)) for
u = 1, . . . , i − 1. Hence (resP1(ωs), . . . , resPn

(ωs)) ∈
CΩ(D, (vQ(ωs) + 1)Q), which is a contradiction. ✷

Remark 3.3: By definition of ωi, we can take any
element in CΩ(D, vQ(ωi)Q) \ CΩ(D, (vQ(ωi) + 1)Q) as
(resP1(ωi), . . . , resPn

(ωi)) = vi = wi.

4. Examples in which the L-construction Gives
Better Linear Codes in Certain Range of
Parameters

In this section we consider algebraic geometry codes on
the algebraic function field defined by

F16(x1, x2, x3), x4
2 + x2 = x5

1, x
4
3 + x3 = (x2/x1)5,

discovered by Garcia and Stichtenoth [3].
F16(x1, x2, x3) is of genus 57 and has 248 places of de-
gree one. x1 has a unique pole Q of degree one. Let D

be the sum of all places of degree one except Q. Let
g1, . . . , g247, ω1, . . . , ω247 be as in Sect. 3. g1, . . . , g247

are calculated in [18]. The number of check symbols
and the designed minimum distance δFR is compared
in Fig. 1.

It is desirable to delete unnecessary rows in the
check matrix as in Eq. (1). Performance of improved
geometric Goppa codes of the L-construction and the
Ω-construction is compared in Fig. 2.

Remark 4.1: For certain choices of a function field
F (e.g. Hermitian function fields), a divisor D, and a
place Q, there always exists an integer m′ such that
CL(D,mQ) = CΩ(D,m′Q) for all integer m. In such a
case the L-construction does not provide better linear
codes than the Ω-construction. But such a condition
does not usually hold.

Remark 4.2: AG codes plotted in Fig. 1 and Fig. 2
are not better than BCH codes of the same length.

5. Conclusion

We showed how to apply the Feng-Rao decoding al-
gorithm and the Feng-Rao bound for CΩ(D,mQ) to
CL(D,mQ). Then we showed that we can correct er-
rors beyond the Goppa bound. Finally we presented
examples in which the L-construction gives better lin-
ear codes than the Ω-construction in certain range of
parameters.

It is a further research to find a more efficient de-
coding algorithm for CL(D,mQ) than the Feng-Rao
algorithm.
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Fig. 2 Performance of improved geometric Goppa codes.
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